180 research outputs found

    Hubble Frontier Field Clusters and their Parallel Fields: Photometric and Photometric Redshift Catalogs

    Full text link
    We present a multi-band analysis of the six Hubble Frontier Field clusters and their parallel fields, producing catalogs with measurements of source photometry and photometric redshifts. We release these catalogs to the public along with maps of intracluster light and models for the brightest galaxies in each field. This rich data set covers a wavelength range from 0.2 to 8 μm\mu m, utilizing data from the Hubble Space Telescope, Keck Observatories, Very Large Telescope array, and Spitzer Space Telescope. We validate our products by injecting into our fields and recovering a population of synthetic objects with similar characteristics as in real extragalactic surveys. The photometric catalogs contain a total of over 32,000 entries with 50\% completeness at a threshold of magAB29.1\mathrm{mag_{AB}}\sim 29.1 for unblended sources, and magAB29\mathrm{mag_{AB}}\sim 29 for blended ones, in the IR-Weighted detection band. Photometric redshifts were obtained by means of template fitting and have an average outlier fraction of 10.3\% and scatter σ=0.067\sigma = 0.067 when compared to spectroscopic estimates. The software we devised, after being tested in the present work, will be applied to new data sets from ongoing and future surveys.Comment: Accepted in ApJS, 26 pages, 20 figure

    Rest-UV Absorption Lines as Metallicity Estimator: the Metal Content of Star-Forming Galaxies at z~5

    Get PDF
    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a "bathtub" approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.Comment: 20 pages, 13 figures, 4 tables; Submitted to Ap

    The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    Get PDF
    We investigate the evolution of the galaxy stellar mass function (SMF) and stellar mass density from redshift z=0.2 to z=1.5 of a KABK_{AB}<22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on NIR observations carried out with WIRCam at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high quality optical photometry from the CFHTLS and UV observations with the GALEX satellite. The accuracy of our photometric redshifts is σz\sigma_z < 0.03 and 0.05 for the bright (iABi_{AB}22.5) samples, respectively. The SMF is measured with ~760,000 galaxies down to KsK_s=22 and over an effective area of ~22.4 deg2^2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error & cosmic variance). We point out the importance of a careful control of the photometric calibration, whose impact becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future generation of cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame (NUV-r) vs (r-KsK_s) color-color diagram separating star-forming and quiescent galaxies, (1) we find that the density of very massive log(M/MM_*/ M_{\odot}) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry mergers, (2) we confirm a scenario where star formation activity is impeded above a stellar mass log(MSF/MM^*_{SF} / M_{\odot}) = 10.64±\pm0.01, a value that is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a main quenching channel that is followed by massive star-forming galaxies, and finally (4) we characterise another quenching mechanism required to explain the clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be publishe

    The VIPERS Multi-Lambda Survey. I. UV and NIR Observations, multi-color catalogues and photometric redshifts

    Get PDF
    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the near infrared with the CFHT/WIRCam camera (KsK_s-band) over an area of 22 and 27 deg2^2, respectively. The depth of the photometry was optimized to measure the physical properties (e.g., SFR, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 < z < 1.2). In this paper, we present the observations, the data reductions and the build-up of the multi-color catalogues. The CFHTLS-T0007 (gri-{\chi}^2) images are used as reference to detect and measure the KsK_s-band photometry, while the T0007 u-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVABNUV_{AB}~25 (at 5{\sigma}) and KABK_{AB}~22 (at 3{\sigma}). The large spectroscopic sample (~51,000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation, and the reliability of our photometric redshifts with a typical accuracy σz\sigma_z \le 0.04 and a catastrophic failure rate {\eta} < 2% down to i~23. We present various tests on the KsK_s band completeness and photometric redshift accuracy by comparing with existing, overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs (r-K_s) diagram at low redshift (z < 0.25) thanks to the high image quality of the CFHTLS. The images, catalogues and photometric redshifts for 1.5 million sources (down to NUVNUV \le 25 or KsK_s \le 22) are released and available at this URL: http://cesam.lam.fr/vipers-mls/Comment: 14 pages, 16 figures. Accepted for publication in A&A. Version to be publishe

    A Coherent Study of Emission Lines from Broad-Band Photometry: Specific Star-Formation Rates and [OIII]/H{\beta} Ratio at 3 < z < 6

    Get PDF
    We measure the H{\alpha} and [OIII] emission line properties as well as specific star-formation rates (sSFR) of spectroscopically confirmed 3<z<6 galaxies in COSMOS from their observed colors vs. redshift evolution. Our model describes consistently the ensemble of galaxies including intrinsic properties (age, metallicity, star-formation history), dust-attenuation, and optical emission lines. We forward-model the measured H{\alpha} equivalent-widths (EW) to obtain the sSFR out to z~6 without stellar mass fitting. We find a strongly increasing rest-frame H{\alpha} EW that is flattening off above z~2.5 with average EWs of 300-600A at z~6. The sSFR is increasing proportional to (1+z)^2.4 at z<2.2 and (1+z)^1.5 at higher redshifts, indicative of a fast mass build-up in high-z galaxies within e-folding times of 100-200Myr at z~6. The redshift evolution at z>3 cannot be fully explained in a picture of cold accretion driven growth. We find a progressively increasing [OIII]{\lambda}5007/H{\beta} ratio out to z~6, consistent with the ratios in local galaxies selected by increasing H{\alpha} EW (i.e., sSFR). This demonstrates the potential of using "local high-z analogs" to investigate the spectroscopic properties and relations of galaxies in the re-ionization epoch.Comment: 18 pages, 11 figures, 3 table

    The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage

    Get PDF
    [Abridged] Non-uniform sampling and gaps in sky coverage are common in galaxy redshift surveys, but these effects can degrade galaxy counts-in-cells and density estimates. We carry out a comparison of methods that aim to fill the gaps to correct for the systematic effects. Our study is motivated by the analysis of the VIMOS Extragalactic Redshift Survey (VIPERS), a flux-limited survey (i<22.5) based on one-pass observations with VIMOS, with gaps covering 25% of the surveyed area and a mean sampling rate of 35%. Our findings are applicable to other surveys with similar observing strategies. We compare 1) two algorithms based on photometric redshift, that assign redshifts to galaxies based on the spectroscopic redshifts of the nearest neighbours, 2) two Bayesian methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock catalogues we quantify the accuracy of the counts-in-cells measurements on scales of R=5 and 8 Mpc/h after applying each of these methods. We also study how they perform to account for spectroscopic redshift error and inhomogeneous and sparse sampling rate. We find that in VIPERS the errors in counts-in-cells measurements on R<10 Mpc/h scales are dominated by the sparseness of the sample. All methods underpredict by 20-35% the counts at high densities. This systematic bias is of the same order as random errors. No method outperforms the others. Random and systematic errors decrease for larger cells. We show that it is possible to separate the lowest and highest densities on scales of 5 Mpc/h at redshifts 0.5<z<1.1, over a large volume such as in VIPERS survey. This is vital for the characterisation of cosmic variance and rare populations (e.g, brightest galaxies) in environmental studies at these redshifts.Comment: 17 pages, 13 figures, accepted for publication in A&A (revised version after minor revision and language editing

    The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    Get PDF
    We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z0.8z\sim0.8 and over a volume of nearly 0.1~Gpc3^3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by 60000\sim60\,000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at Mh,peak=1.90.1+0.2×1012MM_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot} with an amplitude of 0.0250.025, which decreases to 0.001\sim0.001 for massive halos (Mh>1014MM_{\rm h} > 10^{14} M_{\odot}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z=1z=1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M<1011M{M}_{\star} < 10^{11} M_{\odot}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.Comment: 31 pages, 18 figures, 4 table. Accepted for publication in MNRAS. Online material available at http://www.cfhtlens.or

    The VIMOS Public Extragalactic Redshift Survey (VIPERS). Exploring the dependence of the three-point correlation function on stellar mass and luminosity at 0.5<z<1.1

    Get PDF
    The three-point correlation function (3PCF) is a powerful probe to investigate the clustering of matter in the Universe in a complementary way with respect to lower-order statistics, providing additional information with respect to the two-point correlation function and allowing us to shed light on biasing, nonlinear processes, and deviations from Gaussian statistics. In this paper, we analyse the first data release of the VIMOS Public Extragalactic Redshift Survey (VIPERS), determining the dependence of the three-point correlation function on luminosity and stellar mass at z=[0.5,1.1]z=[0.5,1.1]. We exploit the VIPERS Public Data Release 1, consisting of more than 50,000 galaxies with B-band magnitudes in the range 21.6MB5log(h)19.9-21.6\lesssim M_{\rm B}-5\log(h)\lesssim-19.9 and stellar masses in the range 9.8log(M[h2M])10.79.8\lesssim\log(M_\star[h^{-2}\,M_\odot])\lesssim 10.7. We measure both the connected 3PCF and the reduced 3PCF in redshift space, probing different configurations and scales, in the range 2.5<r2.5<r\,[Mpc/h]<20<20. We find a significant dependence of the reduced 3PCF on scales and triangle shapes, with stronger anisotropy at larger scales (r10r\sim10 Mpc/h) and an almost flat trend at smaller scales, r2.5r\sim2.5 Mpc/h. Massive and luminous galaxies present a larger connected 3PCF, while the reduced 3PCF is remarkably insensitive to magnitude and stellar masses in the range we explored. These trends, already observed at low redshifts, are confirmed for the first time to be still valid up to z=1.1z=1.1, providing support to the hierarchical scenario for which massive and bright systems are expected to be more clustered. The possibility of using the measured 3PCF to provide independent constraints on the linear galaxy bias bb has also been explored, showing promising results in agreement with other probes.Comment: 12 pages, 11 figures, 2 tables, accepted for publication in A&

    The VIMOS Public Extragalactic Redshift Survey (VIPERS): PCA-based automatic cleaning and reconstruction of survey spectra

    Get PDF
    Identifying spurious reduction artefacts in galaxy spectra is a challenge for large surveys. We present an algorithm for identifying and repairing residual spurious features in sky-subtracted galaxy spectra with application to the VIPERS survey. The algorithm uses principal component analysis (PCA) applied to the galaxy spectra in the observed frame to identify sky line residuals imprinted at characteristic wavelengths. We further model the galaxy spectra in the rest-frame using PCA to estimate the most probable continuum in the corrupted spectral regions, which are then repaired. We apply the method to 90,000 spectra from the VIPERS survey and compare the results with a subset where careful editing was performed by hand. We find that the automatic technique does an extremely good job in reproducing the time-consuming manual cleaning and does it in a uniform and objective manner across a large data sample. The mask data products produced in this work are released together with the VIPERS second public data release (PDR-2).Comment: Find the VIPERS data release at http://vipers.inaf.i

    The VIMOS Public Extragalactic Redshift Survey (VIPERS): On the correct recovery of the count-in-cell probability distribution function

    Get PDF
    We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that when the sampling is low (the average number of object per cell is around unity) it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS, in order to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a Skewed Log-Normal. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift 0.50.5 to 1.11.1. We found very weak evolution of the probability density distribution function and that it is well approximated, independently from the chosen tracers, by a Gamma distribution.Comment: 14 pages, 11 figures, 2 table
    corecore